Note

- The following research was performed under the HPC Advisory Council activities
 - Compute resource - HPC Advisory Council Cluster Center

- The following was done to provide best practices
 - RELION performance overview over AMD based platforms
 - Understanding RELION communication patterns

- More info on RELION
 - https://github.com/3dem/relion
 - https://www3.mrc-lmb.cam.ac.uk/relion/index.php/Main_Page
RELION (REgularized LIkelihood OptimizatioN) is an open-source program for the refinement of macromolecular structures by single-particle analysis of electron cryo-microscopy (cryo-EM) data.

RELION (REgularized LIkelihood OptimizatioN) implements an empirical Bayesian approach for analysis of electron cryo-microscopy (Cryo-EM).

RELION provides refinement methods of singular or multiple 3D reconstructions as well as 2D class averages.

RELION is an important tool in the study of living cells.
Cluster Configuration

Dallas cluster
- Dual Socket AMD EPYC 7742 CPU @ 2.25GHz, 2 sockets/node
- NVIDIA ConnectX-6 HDR InfiniBand
- NVIDIA Quantum Switch HDR InfiniBand
- Memory: 192GB DDR4 2677MHz RDIMMs per node
- Lustre Storage

Software
- OS: RHEL 8.3, MLNX_OFED 5.2.1
- MPI: HPC-X 2.8.1
- Relion 3.1.0
- Input: shiny_2sets.star (Plasmodium Ribosome, 3D)
RELION Performance and Scalability

![RELION Performance and Scalability](image)

Relion

(Plasmodium ribosome 3D)

- **Elpased time (s)**
- **Number of Nodes**
 - 4
 - 8
 - 16

- **AMD EPYC 7742 CPU @ 2.25GHz**

Lower is better
• SHARP reduced MPI time by 12%
RELION MPI Profiling

- 47% MPI time

16 Nodes, SHARP disabled

- 42% MPI time

16 Nodes, SHARP enabled
• 84% of MPI Communication spent on MPI_Barrier
• 13% MPI_Wait

<table>
<thead>
<tr>
<th>Comm Size</th>
<th>Buffer Size</th>
<th>Ncalls</th>
<th>Total Time</th>
<th>Avg Time</th>
<th>Min Time</th>
<th>Max Time</th>
<th>%MPI</th>
<th>%Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_Barrier</td>
<td>16</td>
<td>0</td>
<td>5152</td>
<td>9.454008e+03</td>
<td>1.835017e+00</td>
<td>1.907300e-06</td>
<td>5.159100e+01</td>
<td>83.79</td>
</tr>
<tr>
<td>MPI_Wait</td>
<td>0</td>
<td>0</td>
<td>22595</td>
<td>1.487701e+03</td>
<td>6.584205e-02</td>
<td>0.000000e+00</td>
<td>3.829000e+00</td>
<td>13.19</td>
</tr>
<tr>
<td>MPI_Bcast</td>
<td>16</td>
<td>0</td>
<td>335544320</td>
<td>2.736226e+02</td>
<td>1.140094e-01</td>
<td>8.918400e-02</td>
<td>1.310200e-01</td>
<td>2.43</td>
</tr>
<tr>
<td>MPI_Send</td>
<td>0</td>
<td>0</td>
<td>536870912</td>
<td>2.323529e+01</td>
<td>5.532212e-02</td>
<td>2.365400e-02</td>
<td>1.609400e-01</td>
<td>0.21</td>
</tr>
<tr>
<td>MPI_Bcast</td>
<td>15</td>
<td>450</td>
<td>25165824</td>
<td>9.822899e+00</td>
<td>2.182866e-02</td>
<td>1.845600e-02</td>
<td>3.063200e-02</td>
<td>0.09</td>
</tr>
<tr>
<td>MPI_Bcast</td>
<td>15</td>
<td>270</td>
<td>16777216</td>
<td>5.291484e+00</td>
<td>1.959809e-02</td>
<td>1.565900e-02</td>
<td>2.765700e-02</td>
<td>0.05</td>
</tr>
</tbody>
</table>

16 Nodes, 1 rank per node, SHARP enabled
RELION MPI Profiling

- Rank 0 – is not a compute rank, use to distribute the job

32 Nodes, 1 rank per node, SHARP enabled
RELION MPI Profiling

• Ring communication
RELION Profiling

- Memory footprint
Performance Analysis Summary

• RELION performance testing
 – Relion is scaling good up to 8 nodes and then slower up to 16 nodes
 – SHARP In-Network Computing reduces MPI time by 12%
 – Performance advantages increases with system size, up to 16 nodes were tested

• RELION Profile
 – Rank #0 does not perform computation
 – Mostly MPI_Barrier (83%)
 – Ring communication matrix
Thank You