Random Ring Effective Bandwidth with Adaptive Routing Analysis

May 2020
• The following research was performed under the HPC-AI Advisory Council activities
 – Compute resource – HPC-AI Advisory Council Cluster Center

• The following was done to provide best practices
 – Effective Bandwidth benchmark on medium-large node count
 – InfiniBand Adaptive Routing effect on this benchmark, focusing on large message size.

• Source Code of Effective Bandwidth
 – https://fs.hlrs.de/projects/par/mpi/b_eff/
Natural Ring and Random Ring Tests

- The effective bandwidth measures the bandwidth of the communication network of parallel and/or distributed computing systems
- Several message sizes, communication patterns and methods are used
- The algorithm uses an average to take into account that short and long messages are transferred with different bandwidth values in real applications
- The test generate several output tables
- The presentation will cover random ring bandwidth table
 Random Ring Bandwidth – Creates random communication ring
 - Rank i communicates with Rank j and Rank k (randomly selected Rank j,k)
 - ...
 - More overlaps between the routes

- For more details of the test, refer to https://fs.hlrs.de/projects/par/mpi/b_eff/
Adaptive Routing

- Adaptive routing enables network status to be taken into consideration when choosing the route for a network packet, providing an opportunity for improved fabric utilization.
- Adaptive routing also provides enhancements to RAS features of the overall system and used to route around failed links and switches.
- When enabled, the leaf switch on the network will select the egress port among the best possible routes available, based on the load on that route.

![Diagram of network topology with leaf, spine, and source-destination nodes showing possible routes.](image)
Cluster Configuration 1

- **Setup 1**
 - Dual Socket Intel Xeon Platinum 8260L CPU @ 2.40GHz
 - Mellanox ConnectX-6 HDR InfiniBand
 - Mellanox Quantum Switch HDR InfiniBand
 - Memory: 192GB DDR4 2677MHz RDIMMs per node

- **Software**
 - OS: CentOS 7.7, MLNX_OFED 4.7-3
 - MPI: HPC-X 2.6.0, UCX 1.8
Cluster Configuration 2

- **Setup 2**
 - Dual Socket Intel Xeon Platinum 8280 CPU @ 2.70GHz
 - Mellanox ConnectX-6 HDR100 InfiniBand
 - Mellanox Quantum Switch HDR InfiniBand
 - Memory: 192GB DDR4 2677MHz RDIMMs per node

- **Software**
 - OS: CentOS 7.6, MLNX_OFED 4.6.1
 - MPI: HPC-X 2.6.0, UCX 1.8
Performance Analysis – Random Ring – Setup 1

- With adaptive routing we observed 99% of the effective bandwidth
- 32 nodes compared to 2 nodes
Performance Analysis – Random Ring – Setup 2

- With adaptive routing we observed 90% of the effective bandwidth
- 1024 nodes compared to 2 nodes
References

• **Effective Bandwidth Source Code**

• **How To Configure Adaptive Routing and SHIELD**