
1

Management and

Monitoring of

GPU Clusters

Axel Koehler
Sr. Solution Architect HPC

HPC Advisory Council Meeting, March 13-15 2013, Lugano

2

Agenda

Introduction into Management and Monitoring of GPU Clusters

Tools Overview

NVML, nvidia-smi, nvidia-healthmon

Out-of Band Management

Third Party Management Tools

GPU Management and Control

GPU Modes, Persistence Mode, GPU UUID, InfoROM

GPU Power Management

Power Limits, Application Clocks, GOM Modes

GPU Job Scheduling

Scheduling specific GPUs, Hardware Locality

Summary

3

Management and Monitoring of GPU clusters

Ability to

Change

GPU State

• Change compute
mode

• Enable ECC
support or clear
ECC error counts

Monitor

GPU State

• GPU and
memory utilization

• ECC error events

• Thermals

Installation
• Ease of installation

• Integration into
deployment tools

Scheduling

GPU Jobs

• High Utilization

• Topology aware

 scheduling

Power

Management

• Set Power Limits

• Query clock

 throttle reasons

Systems

Interoperability

• OOB Management

• Integration with Third
Party Management Tools

4

Tools Overview

5

NVIDIA Management and Monitoring Interfaces

NVIDIA Display Driver

NVML

C API

nvidia-smi

Command

line

pyNVML

Python API

nvidia::ml

Perl API

NVML is available as part of the Tesla Deployment Kit (TDK)
http://developer.nvidia.com/tesla-deployment-kit

http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit

6

NVIDIA Management Library (NVML)

C-based interface for monitoring and managing various states

within NVIDIA GPUs

Intended to be a platform for building 3rd party applications

Thread-safe to make simultaneous NVML calls from multiple

threads

Different categories of calls:

Support Methods (Initialization/Cleanup), Query Methods (System, Device),

Control Methods (Device commands), Event Handling Methods, Error

Reporting Methods

Supported on Tesla and Quadro product line

7

NVML Example (C Version)

Initialize NVML Library

Get Driver Version

Get GPU Count

#include <stdio.h>

#include <nvml.h>

int main() {

nvmlReturn_t result;

unsigned int device_count, i;

char version[80];

result = nvmlInit();

 result = nvmlSystemGetDriverVersion(version,80);

 printf("\n Driver version: %s \n\n", version);

 result = nvmlDeviceGetCount(&device_count);

 printf("Found %d device%s\n\n", device_count,

 device_count != 1 ? "s" : "");

 printf("Listing devices:\n");

8

for (i = 0; i < device_count; i++) {

 nvmlDevice_t device;

 char name[64];

 nvmlComputeMode_t compute_mode;

 result = nvmlDeviceGetHandleByIndex(i, &device);

 result = nvmlDeviceGetName(device, name,

 sizeof(name)/sizeof(name[0]));

 printf("%d. %s \n", i, name);

 }

 result = nvmlShutdown();

}

NVML Example (C Version) contd.

Query for device handle to perform

operations on a device

Get the Device Name

Shut down NVML by releasing all

GPU resource

cc -o nvml_test nvml_test.c -lnvidia-ml -I.

$./nvml_test

 Driver version: 304.64

 Found 2 devices

 Listing devices:

 0. Tesla K20m 1. Tesla K20m

9

NVML Bindings

Bindings expose the NVML feature set through the Perl and

Python scripting languages

Support the same environments as NVML

Updated with each CUDA release and publicly available on

CPAN (http://search.cpan.org/~nvbinding/nvidia-ml-pl/) and

PYPI (http://pypi.python.org/pypi/nvidia-ml-py)

http://search.cpan.org/~nvbinding/nvidia-ml-pl/
http://search.cpan.org/~nvbinding/nvidia-ml-pl/
http://search.cpan.org/~nvbinding/nvidia-ml-pl/
http://search.cpan.org/~nvbinding/nvidia-ml-pl/
http://search.cpan.org/~nvbinding/nvidia-ml-pl/
http://pypi.python.org/pypi/nvidia-ml-py
http://pypi.python.org/pypi/nvidia-ml-py
http://pypi.python.org/pypi/nvidia-ml-py
http://pypi.python.org/pypi/nvidia-ml-py
http://pypi.python.org/pypi/nvidia-ml-py

10

NVML Example (Python Version)

#!/usr/bin/python

from pynvml import *

nvmlInit()

count = nvmlDeviceGetCount()

for index in range(count):

 h=nvmlDeviceGetHandleByIndex(index)

 print nvmlDeviceGetName(h)

gpu = nvmlDeviceGetHandleByIndex(0)

print "Current clock speed in MHz:" ,

nvmlDeviceGetClockInfo(gpu, NVML_CLOCK_SM)

print "Max SM Clock speed in MHz:" ,

nvmlDeviceGetMaxClockInfo(gpu,

 NVML_CLOCK_MEM)

print "Power Usage in milliwatts:" ,

nvmlDeviceGetPowerUsage(gpu)

nvmlShutdown()

 $./nvml_test.py

 Tesla K20m

 Tesla K20m

 Current clock speed in MHz: 324

 Max Mem Clock speed in MHz: 2600

 Power Usage in milliwatts: 15561

11

NVML Example (Perl Version)

#!/usr/bin/perl -w

use nvidia::ml qw(:all);

nvmlInit();

($ret, $version) = nvmlSystemGetDriverVersion();

die nvmlErrorString($ret) unless $ret ==

 $nvidia::ml::bindings::NVML_SUCCESS;

print "Driver version: " . $version . "\n";

($ret, $count) = nvmlDeviceGetCount();

die nvmlErrorString($ret) unless $ret ==

 $nvidia::ml::bindings::NVML_SUCCESS;

print "Found " . $count . " devices\n";

for ($i=0; $i<$count; $i++) {

 ($ret, $handle) = nvmlDeviceGetHandleByIndex($i);

 next if $ret != $nvidia::ml::bindings::NVML_SUCCESS;

 ($ret, $info) = nvmlDeviceGetMemoryInfo($handle);

next if $ret != nvidia::ml::bindings::NVML_SUCCESS;

 $total = ($info->{"total"} / 1024 / 1024);

 print "Total Memory Device " . $i . ": “ . $total . “

 MB\n";

 }

nvmlShutdown();

 $./nvml_test.pl

 Driver version: 304.64

 Found 2 devices

 Total Memory Device 0: 4799.5625 MB

 Total Memory Device 1: 4799.5625 MB

12

NVIDIA System Management Interface

nvidia-smi is a cross-platform command line tool

Exposes the NVML feature set through easy-to use interface

Intended for interactive use and, via XML output, for automation

Examples:

nvidia-smi -q (Query attributes for all GPUs)

nvidia-smi -q -x (Output in XML Format)

nvidia-smi --loop=120 (Continuously report query data)

13

Ganglia GPU Support

NVIDIA GPU monitoring plugin for gmond available

https://github.com/ganglia/gmond_python_modules/tree/master/gpu/nvidia

14

Nagios / Icinga GPU Support

GPU sensor monitoring plugin for Nagios / Icinga based on NVML

Perl binding is developed by Georg Schoenberger

http://www.thomas-krenn.com/en/wiki/GPU_Sensor_Monitoring_Plugin

http://www.thomas-krenn.com/en/wiki/GPU_Sensor_Monitoring_Plugin
http://www.thomas-krenn.com/en/wiki/GPU_Sensor_Monitoring_Plugin
http://www.thomas-krenn.com/en/wiki/GPU_Sensor_Monitoring_Plugin
http://www.thomas-krenn.com/en/wiki/GPU_Sensor_Monitoring_Plugin

15

Other Third Party Tools

Bright Cluster Manager

HP Cluster Management

Utility (CMU)

16

nvidia-healthmon

Diagnostic tool for quick health check

Suggest remedies to software and system configuration problems

Feature Set
Basic CUDA and NVML sanity check

Diagnosis of GPU failure-to-initialize problems

Check for conflicting drivers (I.E. VESA)

InfoROM validation

Poorly seated GPU detection

Check for disconnected power cables

ECC error detection and reporting

Bandwidth test

Coordination with job schedulers is needed as nvidia-healthmon

creates a CUDA context (if GPUs are running in exclusive mode)

http://developer.nvidia.com/tesla-deployment-kit

http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit

17

 Sample config.ini file:

nvidia-healthmon

17

[global]
devices.tesla.count = 1
drivers.blacklist = nouveau

[Tesla K20m]
bandwidth.warn = 5500
bandwidth.min = 4500
pci.gen = 2
pci.width = 16

Tests are controllable via

config files

Can be configured to fail on

cluster-wide inconsistencies

Use cases

Cluster scheduler prologue /

epilogue script

Designed to integrate into third

party tools

After provisioning cluster nodes

Run directly, manually

18

$./ nvidia-healthmon -v -e
Loading Config: SUCCESS
Global Tests
 Black-Listed Drivers: SUCCESS
 Load NVML: SUCCESS
 Load CUDA: SUCCESS
 NVML Sanity: SUCCESS
 Tesla Devices Count: SUCCESS
 Global Test Results: 5 success, 0 errors, 0 warnings, 0 did
 not run
GPU 0000:02:00.0 #0 : Tesla K20m (Serial: 0333412010882)
 NVML Sanity: SUCCESS
 InfoROM: SUCCESS
 GEMINI InfoROM
 This GPU does not share a board with another GPU chip.
 Result: SKIPPED
 ECC: SUCCESS
 CUDA Sanity
 GPU: Tesla K20m

Compute Capability: 3.5
 Amount of Memory: 5032706048 bytes
 ECC: Enabled
 Number of SMs: 13
 Core Clock: 705 MHz
 Watchdog Timeout: Disabled
 Compute Mode: Default
 Result: SUCCESS
 PCIe Maximum Link Generation: SUCCESS
 PCIe Maximum Link Width: SUCCESS
 PCI Bandwidth
 Host-to-GPU pinned memory bandwidth: 5881.894531 MB/s
 GPU-to-host pinned memory bandwidth: 6368.273926 MB/s
 Bidirectional pinned memory bandwidth: 10947.803711 MB/s
 Result: SUCCESS
 Memory
 Allocated 4900807791 bytes (97.3%)
 Result: SUCCESS
 Device Results: 8 success, 0 errors, 0 warnings, 1 did not run

nvidia-healthmon Output (extended run)

19

Out-of-Band API

Out-of-band API provides an interface before OS boot or

driver load

Integration into Lights Out Management

Minimizes performance jitter

Provides a subset of in-band NVML functionality

ECC

Power Draw

Temperature

Static info – Serial number, UUID

BMC can control and monitor GPU

Control system fans based on GPU temperature

Requires system vendor integration

20

GPU Management

and Control

21

Control whether individual or multiple compute applications

may run on the GPU (nvidia-smi –c <n>)

DEFAULT compute mode

Multiple host threads can use the device at the same time

EXCLUSIVE_THREAD compute mode

Only one host thread can use the device at any given time

PROHIBITED compute mode:

No host thread can use the device

EXCLUSIVE_PROCESS compute mode:

Only one context is allowed per device, usable from multiple threads

at a time

Note: nvidia-smi –c settings do not persist across reboots or

driver installs; they must be set at every boot

GPU Compute Modes

22

Causes driver to maintain a persistent connection to the GPU

Faster, more consistent job startup

Not preserved between reboots

Boot scripts to set persistence mode for all GPUs in a system

 nohup nvidia-smi –pm 1

Default: Persistence mode is disabled

GPU Persistence Mode (Linux only)

23

GPU UUID

UUID is the NVIDIA preferred mechanism to identify a GPU

Board serial number is shared by all GPU chips on a single board

GPU index is not guaranteed to remain constant

NVML (nvmlDeviceGetUUID) and nvidia-smi report UUIDs for all

CUDA capable GPUs (R304 drivers and later)

$ nvidia - smi - L
GPU 0: Tesla K20m (UUID: GPU - 89050949- 9e07- beb6- 8271- 250d7a7341f7)
GPU 1: Tesla K20m (UUID: GPU - 08e6a4d4- 1cd6- 0bfb - ae68- 0893d7cec218)

24

InfoROM

InfoROM is a small, persistent store of configuration and state

data for the GPU

Configuration checksum

Makes it easy to verify that two GPUs have the same configuration

Does not cover OS settings like persistence mode

Example:

GPU 0 has ECC mode set to off

GPU 1 has ECC mode set to on

The InfoROM Configuration Checksum for GPU 0 will not match the

checksum for GPU 1

InfoROM verification integrity with nvmlDeviceValidateInforom()

 (exposed in nvidia-healthmon)

25

GPU Power Management

26

GPU Power Management

NVIDIA GPUs have the ability to regulate power draw and

thermals via active clock/voltage management

This is done automatically, but can be directed by users in

some cases

Kepler provides much enhanced support vs. Fermi

Set power limit

Set fixed maximum clocks

Query performance limiting factors

27

Set Power Limit (Kepler only)

Limit the amount of power GPU can consume

Set power budgets and power policies

Exposed in NVML and nvidia-smi

Example: Limit power to 85 Watts

nvidia-smi –pl 85

28

Set Applications Clocks (Kepler only)

Set maximum clocks that compute and graphics applications

Examples:

Query supported clocks: nvidia-smi –q –d SUPPORTED_CLOCKS

Set clocks for applications: nvidia-smi -ac 2000, 800 (requires root access)

Reset clocks: nvidia-smi –rac

Overridden by out-of-spec events (power, temperature)

Fixed performance when multiple GPUs operate in lock step

Equivalent Performance

Reliable Performance

Save Power

29

Query Clock Throttle Reasons

GPU clocks will adjust based on environment and may be lower

than the maximum if:
GPU is idle

Limited by software defined clock limit (eg. set by nvidia−smi −−applications−clocks)

Limited by software power limit (eg. set by nvidia−smi −−power−limit)

Limited by hardware limiters (eg. temperature)

Useful to understand GPU performance

$ nvidia - smi Ƶq
....
 Clocks Throttle Reasons
 Idle : Active
 User Defined Clocks : Not Active
 SW Power Cap : Not Active
 HW Slowdown : Not Active
 Unknown : Not Active

30

GPU Operation Mode

Allows to reduce power usage and optimize GPU throughput

by disabling GPU features

Only supported on Kepler GK110 based K20/K20X (not on C-Class)

Requires a reboot to change (might be removed in the future)

Modes:

All on – All features are on (including graphics capabilities)

Compute – Running only compute tasks

Low Double Precision – Running graphics applications that don’t

 require high bandwidth double precision

31

GPU Job Scheduling

32

Grid Engine

Moab/Torque

IBM Platform LSF

GPU Job Scheduling and Ressource Management

Altair

PBS Professional

Open Grid

Scheduler

33

Requirements for GPU Job Scheduling

Maximize the utilization of the GPU resources in the Cluster

Handle different GPU configurations (different types, number of

GPUs in a node, …)

Map the GPU resources dependent on the hardware topology to

get better performance and scalability

Eg. CPU-GPU pinning, GPU peer-to-peer communication (GPUDirect)

Integrate features like CUDA Proxy

Allow prologue / epilogue scripts (eg. run nvidia-healthmon)

34

Scheduling specific GPUs

The environment variable CUDA_VISIBLE_DEVICES can be used to

select specific GPUs without changing the application code, eg.

Setting CUDA_VISIBLE_DEVICES to 0 will expose the 1st physical device

as the only device to an application (hide a second GPU)

Setting CUDA_VISIBLE_DEVICES to 1,0 will expose the first two physical

devices but swap the order of their device indices: device 0 will become 1

and vice-versa

Allows batch systems and resource manager control

35

hwloc

hwloc utility discovers server topology

Use API to choose CPU and GPU that are physically close

Version 1.7 will add support for “nvml” OS devices such as “nvml0” and

also improves the discovery of their PCIe link speed

Used pre-release version hwloc-1.7a1r5368

 ./configure --prefix=$HOME --enable-libpci --enable-plugins=nvml

lstopo -v

……..

PCI 10de:1028 (P#540672 busid=0000:84:00.0 class=0302(3D) link=8.00GB/s

PCIVendor="nVidia Corporation")

 GPU L#7 (Backend=NVML GPUVendor="NVIDIA Corporation" GPUModel="Tesla K20m"

NVIDIAUUID=GPU-08e6a4d4-1cd6-0bfb-ae68-0893d7cec218) "nvml1“

……..

36

GPU 0 and GPU1

PCI bandwidth

lstopo --output-format png topo.png

37

Skeleton for a MPI application

 /* Read environment variables for local MPI rank */

… = atoi (getenv("xxx_COMM_WORLD_RANK"));

… = atoi (getenv("xxx_COMM_WORLD_LOCAL_RANK"));

/* Discover the hardware topology */

hwloc_topology_init(…);

/* Select CPU and GPU based on the MPI rank and hardware topology */

cudaSetDevice(…);

hwloc_set_cpubind(…);

/* Clean up hardware topology library */

hwloc_topology_destroy(…);

/* Initialize MPI */

MPI_Init(…);

/* Body of MPI computation */

/* Terminate MPI */

MPI_Finalize();

/* Delete the CUDA context */

cudaDeviceReset();

38

Summary

With the increasing number of large GPU clusters the

management and monitoring is getting more important

NVIDIA is providing a management and monitoring API (NVML)

which is used by NVIDIA and Third Party Tools

Power management features provides reliable performance and

power savings

Topology aware scheduling can increase the performance

significant

39

Thank you.

Questions?

Axel Koehler
Sr. Solution Architect HPC

akoehler@nvidia.com

