

OpenFOAM Performance Benchmarking and Profiling

July 2020

Note

- The following research was performed under the HPC Advisory Council activities
 - Compute resource HPC Advisory Council Cluster Center
- The following was done to provide best practices
 - OpenFOAM performance overview over Intel based platforms
 - Understanding OpenFOAM communication patterns
- More info on OpenFOAM
 - https://www.openfoam.com/

OpenFOAM

- Toolbox in an open source CFD applications that can simulate
 - Complex fluid flows involving
 - Chemical reactions
 - Turbulence
 - Heat transfer
 - Solid dynamics
 - Electromagnetics
 - The pricing of financial options

Cluster Configuration

Helios cluster

- Supermicro SYS-6029U-TR4 / Foxconn Groot 1A42USF00-600-G 32-node cluster
- Dual Socket Intel Xeon Gold 6138 CPU @ 2.00GHz
- Mellanox ConnectX-6 HDR100 InfiniBand
- Mellanox Quantum Switch HDR InfiniBand
- Memory: 192GB DDR4 2677MHz RDIMMs per node
- Lustre Storage

Software

- OS: CentOS 7.7
- Driver: MLNX_OFED 4.7
- OpenFOAM Version: v1912
- Input: MotorBike_160
- IO: Lustre/Local Disk
- MPI: HPC-X 2.6.0/Intel MPI 2019 u7

OpenFOAM Profiling – MPI Time

- MPI profiler shows the type of underlying MPI network communications
 - Majority of communications occurred are non-blocking communications
- Majority of the MPI time is spent on non-blocking communications at 32 nodes
 - MPI_Waitall (11% wall), 8-byte MPI_Recv (1.4% wall), 1-byte MPI_Recv (0.7% wall)
 - Only 14% of the overall runtime is spent on MPI communications at 32-nodes

OpenFOAM Profiling – MPI Communication Topology

- Communication topology shows communication patterns among MPI ranks
- MPI processes mainly communicates with neighbors, but also shows some other patterns

OpenFOAM Profiling – MPI Communication Topology

- Communication topology shows communication patterns among MPI ranks
- MPI processes mainly communicates with neighbors, but also shows some other patterns

OpenFOAM Performance – MPI Comparison

- Intel MPI and HPC-X MPI demonstrate similar performance
- OpenFOAM demonstrates linear scalability

OpenFOAM – IO Comparison

With Local storage OpenFOAM demonstrates 8% higher performance at 32 nodes

OpenFOAM – AVX Comparison

OpenFOAM showcase 3% higher performance at 32 nodes with AVX

Summary

- OpenFOAM imposes high demands on the cluster interconnect
- Intel MPI 2019 u7 and HPC-X 2.6 use the same UCX library from the UCF (Unified Communication Framework) consortium, and demonstrate similar performance
- Enabling AVX2 for OpenFOAM had 3% advantage over SSE4.2 (No AVX)
- OpenFOAM running mounted to local disk demonstrated 8% higher performance versus Lustre

Thank You

