1. Introduction:
The following best practices document is provided as courtesy of the HPC Advisory Council.

2. Application Description:
LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for solid-state materials (metals, semiconductors) and soft matter (biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. LAMMPS is distributed as an open source code under the terms of the GPL. More information on LAMMPS can be found at the LAMMPS web site: http://LAMMPS.sandia.gov.

3. Version Information:
This guideline is based on the stable version of LAMMPS dated 15May15 (LAMMPS-15May15.tar.gz). The source code can be downloaded from this URL: http://LAMMPS.sandia.gov/tars/LAMMPS-15May15.tar.gz.

4. Prerequisites:
4.1 Hardware:
The instructions from this best practice have been tested on the HPC Advisory Council, Dell™ PowerEdge™ R730 32-node cluster.

- Dual Socket Intel® Xeon® 14-core CPUs E5-2697 V3 @ 2.60 GHz
- Mellanox ConnectX-4 EDR 100Gb/s InfiniBand adapters
- Mellanox Switch-IB SB7700 36-Port 100Gb/s EDR InfiniBand switches

4.2 Software:
a. OS: Red Hat Enterprise Linux 6.5
b. GNU Compiler for Linux; 4.8.2
c. Other:
- CUDA-6.5 or 7.0
- Cuda-aware MPI - MVAPICH2, OpenMPI, or Platform MPI

5. Installation using HPC-X
module load gnu/4.8.2
module use /opt/hpcx-v1.3.336-gcc-MLNX_OFED_LINUX-3.0-1.0.1-redhat6.5-x86_64/modulefiles
module load hpcx

CVER=6.5
export PATH=/usr/local/cuda-$CVER/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-$CVER/lib64:$I_MPI_ROOT/lib64:$LD_LIBRARY_PATH

5.1 Building GPU library

cd LAMMPS-15May15/lib/gpu
Set “CUDA_HOME = /usr/local/cuda-$CVER” in Makefile. linux and update “-arch=sm_21” according to your GPU.

make -f Makefile.linux
It should generate libgpu.a and Makefile.LAMMPS.

If /usr/local/cuda is not a sym link to cuda-6.5, either fix the sym link or make a following change in Makefile.

LAMMPS
/usr/local/cuda ==> /usr/local/cuda-6.5

5.2 Building CUDA library

cd LAMMPS-15May15/lib/cuda
If /usr/local/cuda is not a sym link to cuda-6.5, make a following change in Makefile.common.

/usr/local/cuda ==> /usr/local/cuda-6.5

make
It should generate libLAMMPScuda.a and Makefile. LAMMPS.

5.3 Building kokkos-cuda and kokkos-omp

cd LAMMPS-15May15/src
Update GPU arch in MAKE/OPTIONS/Makefile.kokkos_cuda if necessary.
Change LINK = nvcc to LINK = mpicxx if make fails on “-fopenmp”.

- kokkos-omp
 make clean-all
 make yes-kokkos
 make yes-USER-CG-CMM
 make kokkos_omp

- kokkos-cuda
 make clean-all
 make yes-gpu
 make yes-kokkos
6. Running LAMMPS with CPU or with GPU

KOKKOS_CUDA with GPU

```bash
mpirun -np <NPROC> lmp_kokkos_cuda -i <input> -sf kk
-k on t <# threads> g <# gpus> -v kokkos <1..7>
```

KOKKOS_OMP with CPU

```bash
mpirun -np <NPROC> lmp_kokkos_omp -i <input> -sf kk
-k on t <# threads> -v kokkos <1..7>
```

7. Sample input file

```bash
# 3d Lennard-Jones melt

variable    kokkos index 0
if "$(kokkos) == 1" then &
  "package    kokkos neigh half/thread comm/forward
device comm/exchange host" &
  "newton off"
if "$(kokkos) == 2" then &
  "package    kokkos neigh full comm/forward device
comm/exchange device" &
  "newton off"
if "$(kokkos) == 3" then &
  "package    kokkos neigh full comm/forward host
comm/exchange host" &
  "newton off"
if "$(kokkos) == 4" then &
  "package    kokkos neigh full comm/forward host
comm/exchange no" &
  "newton off"
if "$(kokkos) == 5" then &
  "package    kokkos neigh half/thread comm/forward
no comm/exchange no" &
  "newton off"
if "$(kokkos) == 6" then &
  "package    kokkos neigh half/thread comm/forward
no comm/exchange no" &
  "newton on"
if "$(kokkos) == 7" then &
  "package    kokkos neigh half/thread comm/forward
device comm/exchange device" &
  "newton on"
```

```bash
units     lj
atom_style atomic
lattice   fcc 0.8442
region    box block 0 64 0 64 0 64
create_box 1 box
create_atoms 1 box
mass       1 1.0
velocity   all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff  1 1 1.0 1.0 2.5
neighbor   0.3 bin
neigh_modify delay 0 every 20 check no
fix        1 all nve
thermo     100
run         20000
```