Introduction to High-Speed InfiniBand Interconnect
What is InfiniBand?

• Industry standard defined by the InfiniBand Trade Association
 – Originated in 1999

• InfiniBand™ specification defines an input/output architecture used to interconnect servers, communications infrastructure equipment, storage and embedded systems

• InfiniBand is a pervasive, low-latency, high-bandwidth interconnect which requires low processing overhead and is ideal to carry multiple traffic types (clustering, communications, storage, management) over a single connection.

• As a mature and field-proven technology, InfiniBand is used in thousands of data centers, high-performance compute clusters and embedded applications that scale from small scale to large scale

Source: InfiniBand® Trade Association (IBTA) www.infinibandta.org
The InfiniBand Architecture

• Industry standard defined by the InfiniBand Trade Association

• Defines System Area Network architecture
 – Comprehensive specification: from physical to applications

• Architecture supports
 – Host Channel Adapters (HCA)
 – Target Channel Adapters (TCA)
 – Switches
 – Routers

• Facilitated HW design for
 – Low latency / high bandwidth
 – Transport offload
InfiniBand Highlights

- **Serial High Bandwidth Links**
 - SDR: 10Gb/s
 - DDR: 20Gb/s
 - QDR: 40Gb/s
 - FDR: 56Gb/s
 - EDR: 100Gb/s
 - HDR: 200Gb/s

- **Ultra low latency**
 - Under 1 µs application to application

- **Reliable, lossless, self-managing fabric**
 - Link level flow control
 - Congestion control to prevent HOL blocking

- **Full CPU Offload**
 - Hardware Based Reliable Transport Protocol
 - Kernel Bypass (User level applications get direct access to hardware)

- **Memory exposed to remote node access**
 - RDMA-read and RDMA-write
 - Atomic operations

- **Quality Of Service**
 - Independent I/O channels at the adapter level
 - Virtual Lanes at the link level

- **Cluster Scalability/flexibility**
 - Up to 48K nodes in subnet, up to 2^{128} in network
 - Parallel routes between end nodes
 - Multiple cluster topologies possible

- **Simplified Cluster Management**
 - Centralized route manager
 - In-band diagnostics and upgrades
InfiniBand Network Stack
InfiniBand Components Overview

- **Host Channel Adapter (HCA)**
 - Device that terminates an IB link and executes transport-level functions and support the verbs interface

- **Switch**
 - A device that routes packets from one link to another of the same IB Subnet

- **Router**
 - A device that transports packets between IBA subnets

- **Bridge**
 - InfiniBand to Ethernet
Physical Layer – Link Rate

• **InfiniBand uses serial stream of bits for data transfer**

• **Link width**
 – 1x – One differential pair per Tx/Rx
 – 4x – Four differential pairs per Tx/Rx
 – 12x - Twelve differential pairs per Tx and per Rx

• **Link Speed**
 – Single Data Rate (SDR) - 2.5Gb/s per lane (10Gb/s for 4x)
 – Double Data Rate (DDR) - 5Gb/s per lane (20Gb/s for 4x)
 – Quad Data Rate (QDR) - 10Gb/s per lane (40Gb/s for 4x)
 – Fourteen Data Rate (FDR) - 14Gb/s per lane (56Gb/s for 4x)
 – Enhanced Data rate (EDR) - 25Gb/s per lane (100Gb/s for 4x)

• **Link rate**
 – Multiplication of the link width and link speed
 – Most common shipping today is 4x ports
Physical Layer – Cables

• **Media types**
 – PCB: several inches
 – Passive copper: 20m SDR, 10m DDR, 7m QDR, 3m FDR, 3m EDR, 3m HDR
 – Fiber: 300m SDR, 150m DDR, 100/300m QDR

• **Link encoding**
 – SDR, DDR, QDR: 8 to 10 bit encoding
 – FDR, EDR, HDR: 64 to 66 bit encoding

• **Industry standard components**
 – Copper cables / Connectors
 – Optical cables
 – Backplane connectors
• **Credit-based link-level flow control**
 - Link Flow control assures no packet loss within fabric even in the presence of congestion
 - Link Receivers grant packet receive buffer space credits per Virtual Lane
 - Flow control credits are issued in 64 byte units

• **Separate flow control per Virtual Lanes provides:**
 - Alleviation of head-of-line blocking
 - Virtual Fabrics – Congestion and latency on one VL does not impact traffic with guaranteed QOS on another VL even though they share the same physical link
Transport Layer – Using Queue Pairs

- QPs are in pairs (Send/Receive)
- Work Queue is the consumer/producer interface to the fabric
- The Consumer/producer initiates a Work Queue Element (WQE)
- The Channel Adapter executes the work request
- The Channel Adapter notifies on completion or errors by writing a Completion Queue Element (CQE) to a Completion Queue (CQ)
Transport Layer – Types Transfer Operations

• **SEND**
 – Read message from HCA local system memory
 – Transfers data to Responder HCA Receive Queue logic
 – Does not specify where the data will be written in remote memory
 – Immediate Data option available

• **RDMA Read**
 – Responder HCA reads its local memory and returns it to the Requesting HCA
 – Requires remote memory access rights, memory start address, message length

• **RDMA Write**
 – Requester HCA sends data to be written into the Responder HCA’s system memory
 – Requires remote memory access rights, memory start address, message length
• **IBA management defines a common management infrastructure**

• **Subnet Management**
 – Provides methods for a subnet manager to discover and configure IBA devices
 – Manage the fabric

• **General management services**
 – Subnet administration - provides nodes with information gathered by the SM
 – Provides a registrar for nodes to register general services they provide
 – Communication establishment and connection management between end nodes
 – Performance management
 • Monitors and reports well-defined performance counters
 – And more…
Management Model

QP1 (virtualized per port)
Uses any VL except 15
MADs called GMPs - LID-Routed
Subject to Flow Control

QP0 (virtualized per port)
Always uses VL15
MADs called SMPs – LID or Direct-Routed
No Flow Control
Subnet Management

Each Subnet must have a Subnet Manager (SM)

Every entity (CA, SW, Router) must support a Subnet Management Agent (SMA)

Multipathing: LMC Supports Multiple LIDS

Topology Discovery
Fabric Maintenance

Initialization uses Directed Route packets:

- LID Route
- Directed Route Vector
- LID Route
Cluster Topologies

- **Topologies that are mainly in use for large clusters**
 - Fat-Tree
 - 3D Torus
 - Mesh
 - Dragonfly

- **Fat-tree (also known as CBB)**
 - Flat network, can be set as oversubscribed network or not
 - In other words, blocking or non blocking
 - Typically the lowest latency network

- **3D Torus**
 - An oversubscribed network, easier to scale
 - Fit more applications with locality

- **Dragonfly**
 - A generic concept of connecting “groups” or “virtual routers” together
 - In a full-graph (all to all) way
Open Fabrics Linux/Windows Software Stack

• Open Fabrics is an open-source software development organization
• Open Fabrics develops software stack for InfiniBand
 – Linux and Windows
• Contains low level drivers, core, Upper Layer Protocols (ULPs), Tools and documents
• Available on OpenFabrics.org web site
Software Stack – Upper Layer protocols Examples

- IPoIB – IP over IB (TCP/UDP over InfiniBand)
- EoIB – Ethernet over IB
- RDS – Reliable Datagram Sockets
- MPI – Message Passing Interface
- iSER – iSCSI for InfiniBand
- SRP – SCSI RDMA Protocol
- uDAPL – User Direct Access Programming Library
- NetworkDirect (Windows only)
Thank You

www.hpcadvisorycouncil.com