AMD Opteron™ processors scalability and Roadmap

HPC Advisory Council Switzerland Workshop 2010
Dr. Ing. Hervé Chevanne | March 17, 2010
AMD’s HPC Product Portfolio

Energy efficient CPU and discrete GPU processors focused on addressing the most demanding HPC workloads

Multi-core x86 Processors
- Outstanding Performance
- Superior Scalability
- Enhanced Power Efficiency

Professional Graphics
- 3D Accelerators For Visualization
- See More and Do More with Your Data

ATI Stream Computing
- GPU Optimized For Computation
- Massive Data-parallel Processing
- High Performance Per Watt
AMD’s HPC Product Portfolio

Energy efficient CPU and discrete GPU processors focused on addressing the most demanding HPC workloads

Multi-core x86 Processors
- Outstanding Performance
- Superior Scalability
- Enhanced Power Efficiency

Professional Graphics
- 3D Accelerators For Visualization
- See More and Do More with Your Data

ATI Stream Computing
- GPU Optimized For Computation
- Massive Data-parallel Processing
- High Performance Per Watt
Planned Server Platform Roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010*</th>
<th>2011*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/4-way Enterprise Platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Maranello”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Socket G34 with AMD SR56x0 and SP5100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"Magny-Cours" New Architecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Six-Core AMD Opteron™ Processor with AMD Chipset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Socket F(1207) with AMD SR56x0 and SP5100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"Shanghai"/"Istanbul"</td>
<td></td>
</tr>
<tr>
<td>1/2-way Power Efficient Platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Socket F (1207)”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Socket F(1207) with Nvidia and Broadcom chipsets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rev F "Barcelona" "Shanghai" "Istanbul"</td>
<td></td>
</tr>
<tr>
<td>1-way Platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“San Marino”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Socket C32+AMD SR56x0 and SP5100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Lisbon” New Architecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Adelaide”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Socket C32 EE+AMD SR5650 and SP5100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Lisbon” New Architecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Buenos Aires”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Socket AM3 with AMD SR56x0 and SP5100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"Suzuka"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Socket AM2+”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Socket AM2+ with Nvidia and Broadcom chipsets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rev F "Budapest" "Suzuka"</td>
<td></td>
</tr>
</tbody>
</table>

(*) Planned model or feature introduction dates
Planned Server Platform Roadmap

<table>
<thead>
<tr>
<th>2/4-way Enterprise Platform</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010*</th>
<th>2011*</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Socket F (1207)"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket F(1207) with Nvidia and Broadcom chipsets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Maranello"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket G34 with AMD SR56x0 and SP5100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Magny-Cours"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Six-Core AMD Opteron™ Processor with AMD Chipset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Shanghai"/"Istanbul"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1/2-way Power Efficient Platform</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010*</th>
<th>2011*</th>
</tr>
</thead>
<tbody>
<tr>
<td>"San Marino"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket C32+AMD SR56x0 and SP5100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Lisbon"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Adelaide"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket C32 EE+AMD SR5650 and SP5100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Lisbon"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-way Platform</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010*</th>
<th>2011*</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Buenos Aires"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket AM3 with AMD SR56x0 and SP5100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Suzuka"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Socket AM2+"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket AM2+ with Nvidia and Broadcom chipsets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev F "Budapest" "Suzuka"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Planned model or feature introduction dates
Server/WS Chipset Roadmap

Mainstream

RD790*
- HT3
- PCI-E Gen2
- 38 lanes
- 1S only

S: Now
P: Now

SR5690
- HT3
- PCI-E Gen2
- 42 lanes
- IOMMU
- RAS features
- Up to 8S support

P: Now

SR5670
- HT3
- PCI-E Gen2
- 30 lanes
- IOMMU
- RAS features
- Up to 2S support

P: Now

SR5650
- HT3
- PCI-E Gen2
- 22 lanes
- IOMMU
- 1S only

P: Now

Entry

RS780*
- HT3
- PCI-E Gen2
- 22 lanes
- Integrated Graphics
- 1S only

S: Now
P: Now

Server/WS Chipset

SB700*
- 6 SATA 3Gb/Sec
- 12+2 USB Ports
- PCI 2.3

S: Now
P: Now

SR5700
- HT3
- PCI-E Gen2
- 30 lanes
- IOMMU
- RAS features
- Up to 2S support

P: Now

SR5500
- HT3
- PCI-E Gen2
- 22 lanes
- IOMMU
- 1S only

P: Now

2008

2009

SB

SP5100
- 6 SATA 3Gb/Sec
- 12+2 USB Ports
- PCI 2.3

P: Now

*Workstation only
x86 64-bit Architecture Evolution

<table>
<thead>
<tr>
<th>Year</th>
<th>Mfg. Process</th>
<th>CPU Core</th>
<th>L2/L3</th>
<th>Hyper Transport™ Technology</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>90nm SOI</td>
<td>K8</td>
<td>1MB/0</td>
<td>3x 1.6GT/.s</td>
<td>2x DDR1 300</td>
</tr>
<tr>
<td>2005</td>
<td>90nm SOI</td>
<td>K8</td>
<td>1MB/0</td>
<td>3x 1.6GT/.s</td>
<td>2x DDR1 400</td>
</tr>
<tr>
<td>2007</td>
<td>65nm SOI</td>
<td>“Greyhound”</td>
<td>512kB/2MB</td>
<td>3x 2GT/s</td>
<td>2x DDR2 667</td>
</tr>
<tr>
<td>2008</td>
<td>45nm SOI</td>
<td>“Greyhound+”</td>
<td>512kB/6MB</td>
<td>3x 4.0GT/s</td>
<td>2x DDR2 800</td>
</tr>
<tr>
<td>2009</td>
<td>45nm SOI</td>
<td>“Greyhound+”</td>
<td>512kB/6MB</td>
<td>3x 4.8GT/s</td>
<td>2x DDR2 800</td>
</tr>
</tbody>
</table>
Power Efficient Innovations

AMD Smart Fetch Technology
Can reduce power consumption by allowing idle cores to enter a "halt" state.

AMD PowerCap Manager
Allows IT datacenter managers to set a fixed limit on a server's processor power consumption.

Dual Dynamic Power Management
Enables more granular power management capabilities to reduce processor energy consumption. Separate power planes for cores and memory controller.

AMD PowerNow!™ Technology with Independent Dynamic Core Technology
Allows processors and cores to dynamically operate at lower power and frequencies, depending on usage and workload to help reduce TCO and to lower power consumption in the datacenter.

Enhanced Performance-per-watt
50% more compute cores vs. quad-core within the same power envelope.*

AMD CoolCore™ Technology
Can reduce processor energy consumption by dynamically turning off sections of the processor when inactive. Extends to the L3 Cache.

HyperTransport™ technology
Links provide up to 57.6 GB/s of Bandwidth per processor.

12.8 GB/s DDR2-800

*Compared to Quad-Core AMD Opteron processor codenamed "Shanghai."
Six-Core AMD Opteron™ Processor

- Six true cores
- New HyperTransport™ technology HT Assist
- Increased HyperTransport™ 3 technology (HT3) bandwidth
- Higher performing Integrated Memory Controller
- Same power/thermal ranges as Quad-Core AMD Opteron™ processor
- Up to 50% higher performance than Quad-Core AMD Opteron™ processor-based servers at the same processor ACP *

(*) Based on SPECint® 2006 results published as of 11/09/09. See backup slides for configuration and performance information.
Six-Core AMD Opteron™ Processor

Performance
- Six-Core AMD Opteron™ Processor
 6M Shared L3 Cache
 North Bridge enhancements (PF + prefetch)
 45nm Process Technology
- DDR2-800 Memory
- HyperTransport™ 3 technology @ up to 4.8 GT/sec

Reliability/Availability
- L3 Cache Index Disable
- HyperTransport Retry (HT-3 Mode)
- x8 ECC (Supports x4 Chipkill in unganged mode)

Virtualization
- AMD Virtualization™ (AMD-V™) technology with Rapid Virtualization Indexing

Manageability
- APML Management Link*

Scalability
- 48-bit Physical Addressing (256TB)
- HT Assist (Cache Probe Filter)

Continued Platform Compatibility
- Nvidia/Broadcom-based F/1207 platforms

(*) APML-enabled platform support required.

SE: 2.8GHz
Std: 2.6GHz
HE: 2.1GHz
EE: 1.8GHz
The Memory Bandwidth

Memory Bandwidth: is the rate at which data can be read from or stored into a semiconductor memory by a processor

Memory Bandwidth at the DIMM level

= 64bits x 0.8GHz x 2ch.
= 12.8GB/s per processor
Six-Core AMD
Opteron™ Processor

Performance
• Six-Core AMD Opteron™ Processor
 6M Shared L3 Cache
 North Bridge enhancements (PF + prefetch)
 45nm Process Technology
• DDR2-800 Memory
• HyperTransport™ 3 technology @ up to 4.8 GT/sec

Reliability/Availability
• L3 Cache Index Disable
• HyperTransport Retry (HT-3 Mode)
• x8 ECC (Supports x4 Chipkill in unganged mode)

Virtualization
• (AMD Virtualization™ (AMD-V™) technology with Rapid Virtualization Indexing

Manageability
• APML Management Link

Scalability
• 48-bit Physical Addressing (256TB)
• HT Assist (Cache Probe Filter)

Continued Platform Compatibility
• Nvidia/Broadcom-based F/1207 platforms

STREAM Bandwidth (GB/s)*

<table>
<thead>
<tr>
<th>Product, Freq, Dram</th>
<th>2S</th>
<th>4S</th>
<th>8S</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Barcelona,” 2.3/2.0, RDDR2-667</td>
<td>17.2</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>“Shanghai,” 2.7/2.2, RDDR2-800</td>
<td>21.4</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>“Istanbul,” 2.4/2.2, RDDR2-800</td>
<td>22</td>
<td>42</td>
<td>81.5</td>
</tr>
</tbody>
</table>

(*) Based on measurements at AMD performance labs. See backup slide for configuration information.
A simple Kernel Analysis

- STREAM Triad:
 \[A[i] = B[i] + q \times C[i] \]
- Each iteration:
 - requires load of 2x64 bits words \((B[i] \text{ and } C[i])\) and stores 1x64 bits word \((A[i])\)
 - performs 2x64bits floating point operations
 \((1 \text{ ADD and } 1 \text{ MUL})\)

\[\Rightarrow \text{Achieving 2 FP operations requires 2 LOAD and 1 STORE} \]

Computational Intensity: \((2 \text{ FPops} / 3 \text{ LDST}) = 0.67\)
Another example: Coupled Maxwell Equations

\[\begin{align*}
\text{DO } K &= 2, \text{NZ}-1; \text{ DO } J = 2, \text{NY}-1; \text{ DO } I = 2, \text{NX}-1 \\
HX(I,J,K) &= C11EDX(I,J,K) \ast (HX(I,J,K) - (EZ(I,J,K) \ast C12HDY(I,J,K) - C12HDY(I,J-1,K) \ast EZ(I,J-1,K)) + (EY(I,J,K) \ast C12HDZ(I,J,K) - C12HDZ(I,J,K-1) \ast EX(I,J,K-1))) \\
HY(I,J,K) &= C11EDY(I,J,K) \ast (HY(I,J,K) - (EX(I,J,K) \ast C12HDZ(I,J,K) - C12HDZ(I,J,K-1) \ast EX(I,J,K-1)) + (EZ(I,J,K) \ast C12HDX(I,J,K) - C12HDX(I-1,J,K) \ast EZ(I-1,J,K))) \\
HZ(I,J,K) &= C11EDZ(I,J,K) \ast (HZ(I,J,K) - (EY(I,J,K) \ast C12HDX(I,J,K) - C12HDX(I-1,J,K) \ast EY(I-1,J,K)) + (EX(I,J,K) \ast C12HDY(I,J,K) - C12HDY(I-1,J,K) \ast EX(I-1,J,K))) \\
EX(I,J,K) &= C22HDX(I,J,K) \ast (EX(I,J,K) - (HZ(I,J,K) \ast C21EDY(I,J,K) - C21EDY(I,J-1,K) \ast HZ(I,J-1,K)) + (HY(I,J,K) \ast C21EDZ(I,J,K) - C21EDZ(I,J,K-1) \ast HY(I,J,K-1))) \\
EY(I,J,K) &= C22HDY(I,J,K) \ast (EY(I,J,K) - (HX(I,J,K) \ast C21EDZ(I,J,K) - C21EDZ(I,J,K-1) \ast HX(I,J,K-1)) + (HZ(I,J,K) \ast C21HDX(I,J,K) - C21HDX(I-1,J,K) \ast HZ(I-1,J,K))) \\
EZ(I,J,K) &= C22HDZ(I,J,K) \ast (EZ(I,J,K) - (HY(I,J,K) \ast C21HDX(I,J,K) - C21HDX(I-1,J,K) \ast HY(I-1,J,K)) + (HX(I,J,K) \ast C21HDY(I,J,K) - C21HDY(I-1,J,K) \ast HX(I,J-1,K)))
\end{align*}\]

ENDDO; ENDDO; ENDDO

66 LOADS/STORES for 54 FP operations

Computational Intensity: \((54 \text{ FOps} / 66 \text{ LDST}) = 0.82\)
FP Intensive vs. Memory Intensive
x86 64-bit Architecture Evolution

<table>
<thead>
<tr>
<th>Year</th>
<th>Mfg. Process</th>
<th>CPU Core</th>
<th>X87</th>
<th>SSE</th>
<th>SSE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>90nm SOI</td>
<td>K8</td>
<td></td>
<td>(2 Mul + 2 Add)/cycle (32bits)</td>
<td>(1 Mul + 1 Add)/cycle (64bits)</td>
</tr>
<tr>
<td>2005</td>
<td>90nm SOI</td>
<td>K8</td>
<td></td>
<td>(4 Mul + 4 Add)/cycle (32bits)</td>
<td>(2 Mul + 2 Add)/cycle (64bits)</td>
</tr>
<tr>
<td>2007</td>
<td>65nm SOI</td>
<td>"Greyhound"</td>
<td></td>
<td>(1 Mul + 1 Add)/cycle (64bits)</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>45nm SOI</td>
<td>"Greyhound+"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>45nm SOI</td>
<td>"Greyhound+"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parallel Scalability of Real Applications
VASP 4.6 Test configuration

AMD DMZ server configuration:

- Tyan S4987 (4 Sockets)
 - 4xOpteron™ 8435 (2.6GHz/2.2GHz)
 - 8x(4GB+2GB) DDR2-667 registered
- SLES 10.1 vanilla
- VASP 4.6
- FFTW 3.2
- PGI 8.0-6
- OPENMPI 1.3.2 with NUMA placement ("numactl")
VASP 4.6
(http://cms.mpi.univie.ac.at/vasp)

Paracetamol – 8 molecules
Parallel Speed-Up
(Higher values are better)
HIRLAM 7.0 Test Configuration

AMD DMZ server configuration:
- AMD “toonie” reference design (2 Sockets)
 2xOpteron™ 2435 (2.6GHz/2.2GHz)
 8x4GB DDR2-800 registered (32GB in total)
- SLES 11
- OPEN64 4.2.2.9
- OPENMPI 1.3.3 with NUMA placement ("numactl")
The HIRLAM System was developed by the HIRLAM Programme group, a co-operative Programme of the national weather services in Denmark, Finland, Iceland, Ireland, the Netherlands, Norway, Spain and Sweden.
GADGET-2 2.0.4 Test Configuration

AMD DMZ server configuration:
- AMD “toonie” reference design (2 Sockets)
 2xOpteron™ 2435 (2.6GHz/2.2GHz)
 8x4GB DDR2-800 registered (32GB in total)
- SLES 11
- OPEN64 4.2.3
- OPENMPI 1.4.1 with NUMA placement ("numactl")
GADGET-2 2.0.4
(http://www.mpa-garching.mpg.de/gadget)

(*) Cosmological formation of a cluster of galaxies (collisionless, vacuum boundaries)
2010 Server Roadmap
x86 64-bit Architecture Evolution

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2005</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mfg. Process</td>
<td>AMD Opteron™</td>
<td>AMD Opteron™</td>
<td>“Barcelona”</td>
<td>“Shanghai”</td>
<td>“Istanbul”</td>
<td>“Magny-Cours”</td>
</tr>
<tr>
<td></td>
<td>90nm SOI</td>
<td>90nm SOI</td>
<td>65nm SOI</td>
<td>45nm SOI</td>
<td>45nm SOI</td>
<td>45nm SOI</td>
</tr>
<tr>
<td>CPU Core</td>
<td>K8</td>
<td>K8</td>
<td>“Greyhound”</td>
<td>“Greyhound+”</td>
<td>“Greyhound+”</td>
<td>“Greyhound+”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2/L3</td>
<td>1MB/0</td>
<td>1MB/0</td>
<td>512kB/2MB</td>
<td>512kB/6MB</td>
<td>512kB/6MB</td>
<td>512kB/12MB</td>
</tr>
<tr>
<td>Hyper Transport™ Technology</td>
<td>3x 1.6GT/s</td>
<td>3x 1.6GT/s</td>
<td>3x 2GT/s</td>
<td>3x 4.0GT/s</td>
<td>3x 4.8GT/s</td>
<td>4x 6.4GT/s</td>
</tr>
<tr>
<td>Memory</td>
<td>2x DDR1 300</td>
<td>2x DDR1 400</td>
<td>2x DDR2 667</td>
<td>2x DDR2 800</td>
<td>2x DDR2 800</td>
<td>4x DDR3 1333</td>
</tr>
</tbody>
</table>

(*) Planned model or feature introduction dates.
Server Roadmap

4-way Performance Platform
- **“Shanghai” 4-Core**
 - 6M L3
 - 3x HT-3 (4.4GT)
 - AMD-V technology
 - DDR2 (Dual-Channel)

- **“Istanbul” 6-Core**
 - 8M L3
 - 3x HT-3 (4.8GT)
 - HT Assist
 - AMD-V technology
 - DDR2 (Dual-Channel)

2 and 4-way Enterprise/Mainstream Platform
- **“Magny-Cours” 8/12-Core**
 - 12M L3
 - 4x HT-3 (6.4GT)
 - U/RDDR3 & LV RDDR3 (Quad-Channel)
 - Cool Speed
 - C1E
 - AMD-V
 - HT Assist

2-way Mainstream Platform
- **“Maranello”**
 - Maximum Scalability
 - AMD SR56x0
 - AMD SP5100
 - Advanced Platform Management

1-way Mainstream Platform
- **“Budapest” 4-Core**
 - 6M L3
 - DDR3
 - 1xHT3
 - AMD-V technology

- **“Suzuka” 4-Core**
 - 6M L3
 - DDR3
 - AMD-V technology

1 and 2-way Energy Efficient/Cost Optimized Platform
- **“San Marino” (Std/HE/EE)**
 - Optimized Energy Efficiency
 - AMD SR56x0
 - AMD SP5100
 - Advanced Platform Management

- **“Buenos Aires”**
 - AMD SR56x0
 - AMD SP5100

Ultra Low Power
- **“Adelaide” (EE Only)**
 - Ultra Low Power
 - AMD SR5650
 - AMD SP5100
 - LV DDR3
 - HT1

(*) Planned model or feature introduction dates
AMD 2010-2011 Sweet Spot Server Strategy

Performance-per-watt and Expandability

- 4P/8P Platforms (~5% of Market*)
- 2P Platforms (~75% of Market*)
- 1P Platforms (~20% of Market*)

Platform Consistency and Commonality

- AMD Opteron™ 6000 Series Platform
 “Magno-Cours” 8 and 12 cores
 “Interlagos” 12 and 16 cores
 - 2/4 socket; 4 memory channels
 - Highly scalable without compromising value

Highly Energy Efficient and Cost Optimized

- AMD Opteron™ 4000 Series Platform
 “Lisbon” 4 and 6 cores
 “Valencia” 6 and 8 cores
 - 1/2 socket; 2 memory channels
 - New levels of value and power efficiency

(*) AMD internal estimates of total server market as of Q309
(**) Planned model or feature introduction dates
The AMD Opteron™ 6100 Series Processor

- **Target:** Enterprise Class 2-way and 4-way Servers
 - Twelve-core and Eight-core 12M L3 Cache
 - AMD CoolCore™ technology, Enhanced AMD PowerNow!™ technology, Enhanced C1 state, CoolSpeed technology, APML*
 - Quad-Channel LV & U/RDDR3, ECC, On-line spare memory support
 - Up to 3 DIMMs/channel, 12 per CPU
 - Expected platforms 2P/2U, 2P Tower, 4P rack, 4P Blade

- **Single Series** for performance DP and MP platforms
 - 2P economics for 4P servers
 - Compelling price/performance for volume market

- **G34 Socket Infrastructure**
 - Performance-optimized Power/thermals
 - Quad 16-bit HT3 links, up to 6.4 GT/s per link
 - AMD SR56x0 chipset with AMD-Vi and PCIe® Gen2

(*) In APML-enabled systems
AMD Opteron™ 6100 Series Processor Logical View and Example Topologies

2P

Diameter 1
Avg Diam 0.75
DRAM BW 85.3 GB/s
XFIRE BW 71.7 GB/s

4P

Diameter 2
Avg Diam 1.25
DRAM BW 170.6 GB/s
XFIRE BW 143.4 GB/s

16bits
8bits
16bits
16bits
DDR3
HyperTransport™ 3 technology
AMD Opteron™ 6100 Series Processor Memory Bandwidth

“Magny-Cours” vs. “Istanbul”:
Up to x3.3 memory bandwidth per proc.
Up to x2.0 core count per proc.

Memory Bandwidth at the DIMM level
= 64bits x 1.333GHz x 4ch.
= 42.6GB/s per processor
2011 Server Roadmap
Server Roadmap

1. **4-way Performance Platform**
 - **“Shanghai”**
 - 4-Core
 - 6M L3
 - 3x HT-3 (4.4GT)
 - AMD-V technology
 - RDOR2 (Dual-Channel)
 - **“Istanbul”**
 - 6-Core
 - 6M L3
 - 3x HT-3 (4.8GT)
 - HT Assist
 - AMD-V technology
 - RDOR2 (Dual-Channel)

2. **2-way Mainstream Platform**
 - **“Socke F (1207)”**
 - **Six-Core AMD Opteron™ Processor w/AMD Chipset**
 - AMD SR56x0
 - AMD SP5100

3. **1-way Platform**
 - **“Budapest”**
 - 4-Core
 - 6M L3
 - DDR3
 - 1xHT1
 - AMD-V technology
 - **“Suzuka”**
 - 4-Core
 - 6M L3
 - DDR3
 - 1xHT1
 - AMD-V technology

4. **Platform Segment**
 - **2009**
 - **2010**
 - **2011**

5. (***) Planned model or feature introduction dates

6. (Yellow text denotes new feature)
Introducing the AMD Processor Architecture Codenamed "Bulldozer"

- "Bulldozer" is an innovative new architecture that offers the potential of dramatically reducing the thread-interference.

- AMD is planning to deliver highly scalable industry-standard processor architecture with true core functionality.

- "Bulldozer" is a modular architecture that creates the building blocks of the next generation of processor designs.
The ability to execute two threads on two discrete, unshared cores without compromising or creating bottlenecks.

“Bulldozer” module

Two cores in a single unit that enables two simultaneous threads, the building blocks of a “Bulldozer” die.

Parallel Threads

The ability to execute two threads on two discrete, unshared cores without compromising or creating bottlenecks.

Flex FP

A flexible floating point unit that can be dedicated OR shared between the two cores per cycle.

Dedicated Scheduler

Independent integer schedulers and an FP scheduler improve scalability by efficient execution.
THANK YOU
BACKUP AND CONFIGURATION INFORMATION
Two-Socket SPECint®_rate2006 – Slide 10

205 using 2 x Six-Core AMD Opteron™ processors (“Istanbul”) Model 2435 in Supermicro A+ Server 1021M-UR+B server, 32GB (8x4GB DDR2-800) memory, 250GB SATA disk drive, SuSE Linux® Enterprise Server 10 SP2 64-bit

136 using 2 x Quad-Core AMD Opteron™ processors (“Shanghai”) Model 2384 in Supermicro A+ Server 1021M-UR+B server, 32GB (8x4GB DDR2-800) memory, 250GB SATA disk drive, SuSE Linux® Enterprise Server 10 SP2 64-bit

Two-Socket STREAM – Slide 13

21GB/s using 2 x Six-Core AMD Opteron™ processors (“Istanbul”) Model 2435 in Supermicro H8DMU+ motherboard, 16GB (8x2GB DDR2-800) memory, SuSE Linux® Enterprise Server 10 SP1 64-bit

21GB/s using 2 x Quad-Core AMD Opteron™ processors (“Shanghai”) Model 8384 in Supermicro H8DMU+ motherboard, 16GB (8x2GB DDR2-800) memory, SuSE Linux® Enterprise Server 10 SP1 64-bit

Four-Socket STREAM – Slide 13

42GB/s using 4 x Six-Core AMD Opteron™ processors (“Istanbul”) Model 8435 in Tyan Thunder n4250QE (S4985-E) motherboard, 32GB (16x2GB DDR2-800) memory, SuSE Linux® Enterprise Server 10 SP1 64-bit (with HT Assist enabled)

24GB/s using 4 x Quad-Core AMD Opteron™ processors (“Shanghai”) Model 8384 in Tyan Thunder n4250QE (S4985-E) motherboard, 32GB (16x2GB DDR2-800) memory, SuSE Linux® Enterprise Server 10 SP1 64-bit
Trademark Attribution

AMD, the AMD Arrow logo, AMD CoolCore, AMD Opteron, AMD PowerNow!, AMD Virtualization, AMD-V, and combinations thereof are trademarks of Advanced Micro Devices, Inc. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium. Microsoft, Windows, and Windows Vista are registered trademarks of Microsoft Corporation in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

©2010 Advanced Micro Devices, Inc. All rights reserved.