CPU alternatives for future high-performance systems

Nikola Puzović
Barcelona Supercomputing Center
Motivation

Projected Performance Development

Performance

Lists

10EFlops
1 EFlops
100PFlops
10 PFlops
10 TFlops
1 TFlop
100 GFlops
10 GFlops
100 MFlops
100 MFlops

Custom
Commodity

Pure Vector CPUs
Server CPUs

HPC Accelerators

Nikola Puzovic - CPU Alternatives for Future HPC Systems
Outline

A little bit of history
 – From vector CPUs to commodity components

Killer mobile processors
 – Overview of current trends for mobile CPUs

Our experiences
 – Low-power prototypes in BSC

Disclaimer:
All references to unavailable products are speculative, taken from web sources. There is no commitment from ARM, Samsung, Intel, or others implied.
In the beginning ... there were only supercomputers

- Built to order
 - Very few of them
- Special purpose hardware
 - Very expensive

- Control Data
- Cray-1
 - 1975, 160 MFLOPS
 - 80 units, 5-8 M$
- Cray X-MP
 - 1982, 800 MFLOPS
- Cray-2
 - 1985, 1.9 GFLOPS
- Cray Y-MP
 - 1988, 2.6 GFLOPS

...Fortran+ Vectorizing Compilers
Then, commodity took over special purpose

ASCI Red, Sandia
- 1997, 1 Tflops (Linpack), 9298 processors at 200 Mhz, 1.2 Tbytes, 850 kWatts
- Intel Pentium Pro
 - Upgraded to Pentium II Xeon, 1999, 3.1 Tflops

ASCI White, Lawrence Livermore Lab.
- 2001, 7.3 TFLOPS, 8192 proc.
 - RS6000 at 375 Mhz, 6 Terabytes, (3+3) MWatts
- IBM Power 3

Message-Passing Programming Models

Nikola Puzovic - CPU Alternatives for Future HPC Systems
“Killer microprocessors”

Microprocessors killed the Vector supercomputers
- They were not faster ...
- ... but they were significantly cheaper and greener

10 microprocessors approx. 1 Vector CPU
- SIMD vs. MIMD programming paradigms
Finally, commodity hardware + commodity software

MareNostrum
- Nov 2004, #4 Top500
 - 20 Tflops, Linpack
- IBM PowerPC 970 FX
 - Blade enclosure
- Myrinet + 1 GbE network
- SuSe Linux
Los Alamos National Laboratory (USA)

Hybrid architecture
- 1 x AMD dual-core Master blade
- 2 x PowerXCell 8i Worker blade

Hybrid MPI + Task off-load model

296 racks
- 6,480 Opteron processors
- 12,960 Cell processors
 - 128-bit SIMD

Infiniband interconnect
- 288-port switches

2.35 MWatt (425 MFLOPS/W)
2009 - Cray Jaguar (1.8 PFLOPS)

- Oak Ridge National Laboratory (USA)

- Multi-core architecture
 - Hybrid MPI + OpenMP programming

- 230 racks

- 224,256 AMD Opteron processors
 - 6 cores / chip

- Cray Seastar2+ interconnect
 - 3D-mesh using AMD Hypertransport

- 7 MWatt (257 MFLOPS / W)
2012 – Cray Titan (17.6 PFLOPS)

- DOE/SC/Oak Ridge National Laboratory
 - Jaguar GPU upgrade

- 200 racks
- 224,256 Cray XK7 nodes
 - 16-core AMD Opteron
 - Nvidia Testa K20X GPU

- 8.2 Mwatts (2.142 MFLOPS/W)
Outline

A little bit of history
 – From vector CPUs to commodity components

Killer-mobile processors
 – Overview of current trends for mobile CPUs

Our experiences
 – Low-power prototypes in BSC
The next step in the commodity chain

- Total cores in Nov’12 Top500
 - 14.9M Cores
- Tablets sold 2012
 - > 100M Tablets
- Smartphones sold 2012
 - > 712M Phones

Nikola Puzovic - CPU Alternatives for Future HPC Systems
Current trends in mobile CPUs

We want to see how mobile SoCs behave with HPC apps
- Current test systems have limited memory
- Use a set of HPC-specific micro-kernels

Micro-kernels
- Stress different architectural features
- Cover a wide range of HPC application domains
- Reduce porting effort to new architectures

Single core and multi-core evaluations
- Goal is to see how mobile CPUs change through generations…
- …and to compare them to modern HPC cores
ARM Cortex-A9

Smartphone CPU

OoO superscalar processor
 - Issue width of 4

VFP for 64-bit Floating Point
 - DP: 1 FMA each 2 cycles

The first ARM CPU truly usable for testing HPC workloads
NVIDIA Tegra2

- Dual-core Cortex-A9 @ 1GHz
 - VFP for 64-bit Floating Point
 - 2 GFLOPS (1 FMA / 2 cycles)

- Low-power Nvidia GPU
 - OpenGL only, **CUDA not supported**

- Several (not useful for HPC) accelerators
 - Video encoder-decoder
 - Audio processor
 - Image processor

- 2 GFLOPS ~ 0.5 Watt
NVIDIA Tegra3

- Quad-core Cortex-A9 @ 1.3GHz
 - VFP for 64-bit Floating Point
 • 5.2 GFLOPS (1 FMA / 2 cycles)
 - NEON for 32-bit floating Point SIMD

- Low-power Nvidia GPU
 - 3x faster than Tegra2
 • For graphics only
 - CUDA not supported

SECO Q7 board
ARM Cortex-A15

- Next generation of Cortex
 - Improved uArch
 - Improved performance
 - Virtualization support
 - Improved multiprocessing capabilities

- Floating point performance
 - DP: 1 FMA per cycle
Samsung Exynos 5 Dual

- Dual-core ARM Cortex-A15 @ (up to 1.7 GHz)
 - VFP for 64-bit Floating Point
 - 6.8 GFLOPS (1 FMA / cycle)
 - NEON for 32-bit floating Point SIMD

- Quad-core ARM Mali T604
 - Compute capable
 - OpenCL 1.1
 - 68 GFLOPS (SP)

- Shared memory between CPU and GPU
MicroKernels

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Operation (vecop)</td>
<td>Common operation in regular codes</td>
</tr>
<tr>
<td>Dense Matrix-Matrix Multiplication (dmmm)</td>
<td>Common operation: measures data reuse and compute performance</td>
</tr>
<tr>
<td>3D stencil (3dstc)</td>
<td>Strided memory accesses (7-point 3D stencil)</td>
</tr>
<tr>
<td>2D Convolution (2dcon)</td>
<td>Spatial locality</td>
</tr>
<tr>
<td>Fast Fourier Transform (fft)</td>
<td>Peak floating-point, variable-stride accesses</td>
</tr>
<tr>
<td>Reduction (red)</td>
<td>Varying levels of parallelism (Scalar sum)</td>
</tr>
<tr>
<td>Histogram (hist)</td>
<td>Histogram with local privatisation, requires reduction stage</td>
</tr>
<tr>
<td>Merge Sort (msort)</td>
<td>Barrier operations</td>
</tr>
<tr>
<td>N-Body (nbody)</td>
<td>Irregular memory accesses</td>
</tr>
<tr>
<td>Atomic Monte-Carlo Dynamics (amcd)</td>
<td>Embarrassingly parallel: peak compute performance</td>
</tr>
<tr>
<td>Sparse Vector-Matrix Multiplication (spwm)</td>
<td>Load imbalance</td>
</tr>
</tbody>
</table>
Performance – Double precision FP (single core)

- Performance normalized to Tegra2 board (single core)
 - Benefits due to increased frequency and improved micro-architecture
 - Better memory technology gives additional performance benefits
Performance – Double precision FP (multi-core)

- Performance normalized to Tegra2 board (OpenMP)
 - Threads used: 2 in Tegra2, 4 in Tegra3, 2 in Exynos
 - New generation of ARM cores shows benefits despite smaller number of cores being used
Energy efficiency in GOps/Watt

- Gains proportional to improvements in execution time
- Increased frequency and complex architecture do add power...
- …but “overhead” is too large for this to have an effect
Results – single core summary

- T3 faster than T2 – frequency increase
- Exynos faster than T3 – uArch improvements
ARMv8 architecture

Cortex-A57 64-bit processor
- Improved performance in all workloads
 - Up to 3x announced at same power budget
- Interoperability with ARM Mali GPUs

Double Floating Point performance
- DP support in the Neon instruction set
 - 128-bit words
- Should double performance wrt Cortex-A15

big.LITTLE processing
- Cortex-A53 – Low-performance, low-power companion on A57
- Can pair A57s with A53s
ARMv8 could improve DFP performance

- We keep the same frequency for our projection (pessimistic)
- Increase the DP capability 2x (optimistic?)
- Just a speculation, but could happen…
What about current HPC CPUs?

Comparison with single core of Intel SandyBridge-EP E5-2670 @ 2.6 GHz

Current “mobile champion” still far away

- Next generation mobile CPUs could bring significant improvements
- Also, back in time, SX5 was significantly faster than Pentium II…
History may be about to repeat itself …

– Mobile processor are not faster …
– … but they are significantly cheaper and greener
Today’s situation looks very familiar
- “Mobile vs. Server” similar to “Server vs. Vector”
- Significantly lower cost of mobile CPUs (thousands vs hundreds of $)
- Same programming model, larger scale
 - Will need more parallelism (probably less than one order of magnitude)

Off course, this does not prove anything
- Mobile CPUs will become a viable alternative, but there’s no guarantee that they will make it to mainstream HPC systems
Outline

A little bit of history
 – From vector CPUs to commodity components

Killer-mobile processors
 – Overview of current trends for mobile CPUs

Our experiences
 – Low-power prototypes in BSC
Prototypes are critical to accelerate software development
- System software stack + applications
Proof of concept

- It is possible to deploy a cluster of smartphone processors
- Enable software stack development
Tibidabo: scalability and energy efficiency

- HPC applications scale out of the box on tibidabo
 - Strong scaling depends on the size of input set
- HPL – good weak scaling
 - 120 MFLOPS/Watt

- Specfem3D
 - Improvements over x86 cluster in energy efficiency (up to 3x)

Pedraforca: ARM+GPU cluster

Stage One
- Test cluster of CARMA kits
 - Tegra3 SoC
 - Quadro 1000M
- 1 GbE interconnect

Stage Two
- ARM multicore SoC (NVIDIA)
- NVIDIA GPU

In progress…
Mont-Blanc project goals

- To develop an **European** Exascale approach
- Based on embedded **power-efficient technology**

Objetives
- Develop a first prototype system, limited by available technology
- Design a Next Generation system, to overcome the limitations
- Develop a set of Exascale applications targeting the new system
Mont-Blanc prototype

- **Exynos 5 Dual**
 - Integrated CPU + GPU
 - Dual core Cortex-A15 + ARM Mali T604 GPU

- **Integrated GPU has many advantages**
 - Shared memory with CPU
 - Even cache coherent!
 - No power wasted on PCIe bus
 - No power wasted on GDDR5 memory
 - Higher energy efficiency + lower cost
High density packaging architecture

- Standard BullX blade enclosure
- Multiple compute nodes per blade
 - Additional level of interconnect, on-blade network

Deployment expected later this year
Are we building BlueGene again?

Yes ...
- Exploit Pollack's Rule in presence of abundant parallelism
 - Many small cores vs. Single fast core

... and No
- Heterogeneous computing
 - On-chip GPU
- Commodity vs. Special purpose
 - Higher volume
 - Many vendors
 - Lower cost
- Lots of room for improvement
 - No SIMD / vectors yet ...
- Build on Europe's embedded strengths
Killer mobile processors
- Not yet there, but getting very close

We will see a supercomputer with mobile SoCs soon
- Mont-Blanc prototype @ BSC
- Question is if it will become mainstream

www.montblanc-project.eu MontBlancEU @MontBlanc_EU