
© 2012 MELLANOX TECHNOLOGIES 1

New Accelerations for Parallel Programming
HPC Advisory Council – Spain 2012

Todd Wilde – Director of Technical Computing and HPC

 todd@mellanox.com

© 2012 MELLANOX TECHNOLOGIES 2

Agenda

 The Co-Design Architecture for Parallel Programming Languages

 An Introduction to PGAS Languages

 FCA – Fabric Collective Accelerations

 Mellanox/HP Collaboration On InfiniBand Scalability for One-

Sided Communication

© 2012 MELLANOX TECHNOLOGIES 3

The Co-Design Architecture

Network

Server/Storage

Application

Communication Libraries
SOFTWARE

DEVELOPMENT

HARDWARE

DEVELOPMENT

© 2012 MELLANOX TECHNOLOGIES 4

The Co-Design Architecture

Network

Server/Storage

Application

Communication Libraries

Network

Server/Storage

Application

Communication Libraries

Extension of I/O

communications

(RDMA, collectives,

synchronization etc)

Throughput

Latency

Message Rate

Hardware Offloads

Bottlenecks

MPI

SHMEM/PGAS

© 2012 MELLANOX TECHNOLOGIES 5

The Co-Design Architecture

Network

Server/Storage

Application

Communication Libraries

Network

Server/Storage

Application

Communication Libraries

Extension of I/O

communications

(RDMA, collective

optimizations, etc)

Throughput

Latency

Message Rate

Hardware Offloads

MPI

SHMEM/PGAS

© 2012 MELLANOX TECHNOLOGIES 6

Mellanox ScalableHPC Accelerate Parallel Applications

InfiniBand Verbs API

MXM
- Reliable Messaging Optimized for Mellanox HCA

- Hybrid Transport Mechanism

- Efficient Memory Registration

- Receive Side Tag Matching

FCA
- Topology Aware Collective Optimization

- Hardware Multicast

- Separate Virtual Fabric for Collectives

- CoreDIrect Hardware Offload

© 2012 MELLANOX TECHNOLOGIES 7

An Introduction to PGAS Languages

© 2012 MELLANOX TECHNOLOGIES 8

Introduction to PGAS Languages

 PGAS – Partitioned Global Address Space – Best of both worlds

• Message passing and shared memory methods

 Explicitly-parallel programming model with SPMD parallelism like MPI

• Fixed at program start-up, typically 1 thread per processor

 Global address space model of memory

• Allows programmer to directly represent distributed data structures

 Address space is logically partitioned

• Local vs. remote memory (two-level hierarchy)

 SHMEM is being used/proposed as a lower level interface for PGAS

implementations.

 Multiple PGAS languages: UPC (C), CAF (Fortran), Titanium (Java)

© 2012 MELLANOX TECHNOLOGIES 9

PGAS Language Example - UPC

 UPC – Unified Parallel C
• Open source compiler from LBNL/UCB

• Currently operates over Infiniband Verbs RC connections via GASnet interface

 Utilizes a distributed shared memory programming model
• Similar to traditional shared memory model, but allows for data locality

• Distributed shared memory is divided into partitions where each Mi is associated with
thread THi.

UPC

TH0 TH1 THn-1

M0
M1

Mn-1

Shared Address Space

 Features include:
• Simple statements for remote

memory access

• Minimization of thread communication

overhead by exploiting data locality

© 2012 MELLANOX TECHNOLOGIES 10

UPC Memory Model

 UPC memory is divided into private and shared space

 Each thread has its own private space in addition to a portion of the

shared space

 A UPC shared pointer can access any locations in the shared space. A

private pointer may reference only addresses in it’s private space or local

portion of shared space.

Private0

Thread0

Private1

Thread1

PrivateN-1

ThreadN-1

……..

Shared Address Space

Affinity to thread 0

© 2012 MELLANOX TECHNOLOGIES 11

UPC Memory Model – Shared Memory Usage

 Must use shared qualifier in variable declaration

• shared [block_size] type variable_name : means that variable_name is distibuted

across memory space in the span of block_size per thread.

 Examples:

• shared [1] int array1[N]

• shared [N] int array2[N]

Array2[0]

Array2[1]

Array2[2]

Array2[3]

Array2[4]

Array2[5]

…..

Thread0 Thread1 Thread2

Array1[0]

Array1[3]

Array1[6]

Thread0

Array1[1]

Array1[4]

Array1[7]

Thread1

Array1[2]

Array1[5]

Array1[8]

Thread2

© 2012 MELLANOX TECHNOLOGIES 12

UPC Execution Model

 A number of threads working independently in a SPMD fashion
• Number of threads specified at compile-time or run-time; available as

program variable THREADS

• MYTHREAD specifies thread index (0..THREADS-1)

• upc_barrier is a global synchronization: all wait

• upc_forall is similar to for-loop but also indicates which thread will run the

loop iteration

 There are two compilation modes
• Static Threads mode:

- THREADS is specified at compile time by the user

- The program may use THREADS as a compile-time constant

• Dynamic threads mode:

- Compiled code may be run with varying numbers of threads

© 2012 MELLANOX TECHNOLOGIES 13

My first UPC program

#include <upc_relaxed.h>

#include <stdio.h>

void main()

{

 if (MYTHREAD==0){

 printf("Rcv’d: ‘Starting Execution’ from THREAD %d\n",MYTHREAD);

 }

 printf("Hello World from THREAD %d (of %d THREADS)\n", MYTHREAD,
THREADS);

}

© 2012 MELLANOX TECHNOLOGIES 14

UPC Programming – Array Copy Example

#include<upc_relaxed.h>

#define N 100

shared int v1[N], v2[N], v1plusv2[N];

void main()

{

 int i;

 for(i=0;i<N;i++)

 if(MYTHREAD==i%THREADS)

 v1plusv2[i]=v1[i]+v2[i] ;

}

v1[0]

…

v1[96]

V2[0]

….

V2[96]

V1plusv2[0]

…

V1plusv2[96]

Thread0

v1[1]

…

v1[97]

V2[1]

….

V2[97]

V1plusv2[1]

…

V1plusv2[97]

Thread1

v1[2]

…

v1[98]

V2[2]

….

V2[98]

V1plusv2[2]

…

V1plusv2[98]

Thread2

v1[3]

…

v1[99]

V2[3]

….

V2[99]

V1plusv2[3]

…

V1plusv2[99]

Thread3

Owner computes

© 2012 MELLANOX TECHNOLOGIES 15

UPC Programming – Array Copy Example (optimization)

#include<upc_relaxed.h>

#define N 100

shared int v1[N], v2[N], v1plusv2[N];

void main()

{

 int i;

 upc_forall(i=0;i<N;i++,i)

 if(MYTHREAD==i%THREADS)

 v1plusv2[i]=v1[i]+v2[i] ;

}

Owner computes

© 2012 MELLANOX TECHNOLOGIES 16

Fabric Collective Accelerations

© 2012 MELLANOX TECHNOLOGIES 17

What are Collective Operations?

 Collective Operations are Group Communications involving all processes

in job

 Synchronous operations
• By nature consume many ‘Wait’ cycles on large clusters

 Popular examples
• Barrier

• Reduce

• Allreduce

• Gather

• Allgather

• Bcast

© 2012 MELLANOX TECHNOLOGIES 18

Collective Operation Challenges at Large Scale

 Collective algorithms are not topology aware

and can be inefficient

  Congestion due to many-to-many

communications

  Slow nodes and OS jitter affect

scalability and increase variability

Ideal Actual

© 2012 MELLANOX TECHNOLOGIES 19

Mellanox InfiniBand Switches
High performance IB multicast
for result distribution

FCA Manager

Topology-based collective tree
Separate Virtual network
IB multicast for result distribution

Mellanox Fabric Collectives Accelerations (FCA)

FCA Agents

Library integrated with MPI
Intra-node optimizations
CoreDirect integration

© 2012 MELLANOX TECHNOLOGIES 20

Collective Example – Allreduce using Recursive Doubling

 Collective Operations are Group Communications involving all

processes in job

7 8 5 6 3 4 1 2 15 11 7 3 3 10 11 26 10 36 36 36

 A 4000 process Allreduce using recursive doubling is 12 stages

7 5 3 1 36 36 36 36 36

© 2012 MELLANOX TECHNOLOGIES 21

Scalable Collectives with FCA

1 2

3 4

5 6

7 8
1 2

3 4

5 6

7 8
36

1 2

3 4

5 6

7 8
36

Intra-node processing

1 2

3 4

5 6

7 8
36

1st tier coalescing

36 648 648

2nd tier coalescing

(result at root)

11664 11664 11664 11664

Multicast Result
Host1 Host18 Host324 Host306

SW-1 SW-18

© 2012 MELLANOX TECHNOLOGIES - MELLANOX CONFIDENTIAL - 22

Thank You
HPC@mellanox.com

