pNFS Update A standard for parallel file systems

HPC Advisory Council Lugano, March 2011

Brent Welch welch@panasas.com Panasas, Inc.

Why a Standard for Parallel I/O?

NFS is the only network file system standard

- Proprietary file systems have unique advantages, but can cause lock-in
- NFS widens the playing field
 - Panasas, IBM, EMC want to bring their experience in large scale, high-performance file systems into the NFS community
 - Sun/Oracle and NetApp want a standard HPC solution
 - Broader market benefits vendors
 - More competition benefits customers
- What about open source
 - NFSv4 Linux client is very important for NFSv4 adoption, and therefore pNFS
 - Still need vendors that are willing to do the heavy lifting required in quality assurance for mission critical storage

NFSv4 and pNFS

NFS created in '80s to share data among engineering workstations

- NFSv3 widely deployed
- NFSv4 several years in the making, lots of new stuff
 - Integrated Kerberos (or PKI) user authentication
 - Integrated File Locking and Open Delegations (stateful server!)
 - ACLs (hybrid of Windows and POSIX models)
 - Official path to add (optional) extensions
- NFSv4.1 adds even more
 - pNFS for parallel IO
 - Directory Delegations for efficiency
 - RPC Sessions for robustness, better RDMA support

Whence pNFS

- Gary Grider (LANL) and Lee Ward (Sandia)
 - Spoke with Garth Gibson about the idea of parallel IO for NFS in 2003
- Garth Gibson (Panasas/CMU) and Peter Honeyman (UMich/CITI)
 - Hosted pNFS workshop at Ann Arbor in December 2003
- Garth Gibson, Peter Corbett (NetApp), Brent Welch
 - Wrote initial pNFS IETF drafts, presented to IETF in July and November 2004
- Andy Adamson (CITI), David Black (EMC), Garth Goodson (NetApp), Tom Pisek (Sun), Benny Halevy (Panasas), Dave Noveck (NetApp), Spenser Shepler (Sun), Brian Pawlowski (NetApp), Marc Eshel (IBM), ...
 - Dean Hildebrand (CITI) did pNFS prototype based on PVFS
 - NFSv4 working group commented on drafts in 2005, folded pNFS into the 4.1 minorversion draft in 2006

Many others

pNFS: Standard Storage Clusters

- PNFS is an extension to the Network File System v4 protocol standard
- Allows for parallel and direct access
 - From Parallel Network File System clients
 - To Storage Devices over multiple storage protocols
 - Moves the NFS (metadata) server out of the data path

panasas

The pNFS Standard

- The pNFS standard defines the NFSv4.1 protocol extensions between the server and client
- The I/O protocol between the client and storage is specified elsewhere, for example:
 - SCSI **Block** Commands (**SBC**) over Fibre Channel (**FC**)
 - SCSI Object-based Storage Device (OSD) over iSCSI
 - Network File System (NFS)
- The control protocol between the server and storage devices is also specified elsewhere, for example:
 - SCSI Object-based Storage Device (OSD) over iSCSI

pNFS Layouts

Client gets a *layout* from the NFS Server

- The layout maps the file onto storage devices and addresses
- The client uses the layout to perform direct I/O to storage

At any time the server can recall the layout

Client commits changes and returns the layout when it's done
 pNFS is optional, the client can always use regular NFSv4 I/O

pNFS Client

Common client for different storage back ends Wider availability across operating systems Fewer support issues for storage vendors

Key pNFS Participants

- Panasas (Objects)
- ORNL and ESSC/DoD funding Linux pNFS development
- Network Appliance (Files over NFSv4)
- IBM (Files, based on GPFS)
- BlueArc (Files over NFSv4)
- EMC (Blocks, HighRoad MPFSi)
- Sun/Oracle (Files over NFSv4)
- U of Michigan/CITI (Linux maint., EMC and Microsoft contracts)
- DESY Java-based implementation

pNFS Standard Status

- IETF approved Internet Drafts in December 2008
- RFCs for NFSv4.1, pNFS-objects, and pNFS-blocks published January 2010
 - RFC 5661 Network File System (NFS) Version 4 Minor Version 1 Protocol
 - RFC 5662 Network File System (NFS) Version 4 Minor Version 1 External Data Representation Standard (XDR) Description
 - RFC 5663 Parallel NFS (pNFS) Block/Volume Layout
 - RFC 5664 Object-Based Parallel NFS (pNFS) Operations

pNFS Implementation Status

NFSv4.1 mandatory features have priority

- RPC session layer giving reliable at-most-once semantics, channel bonding, RDMA
- Server callback channel
- Server crash recovery
- Other details

EXOFS object-based file system (file system over OSD)

- In kernel module since 2.6.29 (2008)
- Export of this file system via pNFS server protocols
- Simple striping (RAID-0), mirroring (RAID-1), and RAID-5
- "Most stable and scalable implementation"

Files (NFSv4 data server) implementation

- Open source server based on GFS
- Layout recall not required due to nature of underlying cluster file system

Blocks implementation

- Server in user-level process, Ganesha/NFS support desirable
- Sponsored by EMC

Calibrating My Predictions

2006

- "TBD behind adoption of NFS 4.0 and pNFS implementations"

- 2007 September
 - Anticipate working group "last call" this October
 - Anticipate RFC being published late Q1 2008
 - Expect vendor announcements after the RFC is published
- 2008 November (SC08)
 - IETF working group last call complete, area director approval
 - (Linux patch adoption process really just getting started)
- 2009 November (SC09)
 - Basic NFSv4.1 features 2H2009
 - NFSv4.1 pNFS and layout drivers by 1H2010
 - Linux distributions shipping supported pNFS in 2010, 2011

panasas

Linux Release Cycle 2009

2.6.30

- Merge window March 2009
- RPC sessions, NVSv4.1 server, OSDv2 rev5, EXOFS

2.6.31

- Merge window June 2009
- NFSv4.1 client, sans pNFS
- 2.6.32
 - Merge window September 2009
 - 130 server-side patches add back-channel
- 2.6.33
 - Merge window December 2009, released Feb 2010
 - 43 pNFS patches

Linux Release Cycle 2010

2.6.34

- Merge window February 2010, Released May 2010
- 21 NFS 4.1 patches

2.6.35

- Merge window May 2010, release August? 2010
- 1 client and 1 server patch (4.1 support)
- 2.6.36
 - Merge window August 2010
 - 16 patches accepted into the merge

2.6.37

- Merge window November 2010
- Includes first chunk of pNFS beyond generic 4.1 infrastructure
- Still disabled

Linux Release Cycle 2011

2.6.XX

- 250 patches of remaining pNFS functionality divided into 4 batches by the developers and maintainers
- Remaining files-based pNFS patches
- Object-based pNFS
- Block-based pNFS
- Push from RedHat for 6.1 and beyond
- Key IETF working group meeting in February that resolved a fine point with LAYOUT_COMMIT and files backend
 Details adaption presses will stratch to the and of 2014
- Patch adoption process will stretch to the end of 2011

pNFS Performance Testing

Native Panasas client

Testing in Panasas Labs

- October 2010
- Benny Halevy, Boaz Harrosh

Compare pNFS with DirectFlow same back end

- Medium sized PanFS storage cluster (4.8 GB/sec)
- Modest number of clients (128)
- A few fast clients
- N-to-N streaming I/O tests

System Structure

panasas

Equipment

12 Shelves Pas 7

- 500 GB Blades
- 4x 10GE uplink from each shelf
- Force 10 E-1200 switch
- 128 clients (relatively old Nacona)
 - 2 single-core sockets (2.8Gz), 8GB mem, 1GE
- 4 Faster clients (E5530)
 - 4 quad-core sockets (2.4 GHz), 12GB mem, 10GE

Streaming Bandwidth

Iozone benchmark

- IGE files
- Per-file Object RAID
 - Client writes data and parity in RAID-5 pattern
 - Feature of object-based pNFS layout

How to use pNFS today

Up-to-date GIT tree from Linux developers

- <u>bhalevy@panasas.com</u> manages the source trees
- Red Hat/Fedora RPMs that include pNFS
 - steved@redhat.com builds experimental packages
- Linux NFS mailing list, nfs@linux-nfs.org
- http://open-osd.org
 - Useful to get to OSD target, the user level program
 - Exofs uses kernel initiator, need the target

How to use pNFS today

Benny's git tree:

git://linux-nfs.org/~bhalevy/linux-pnfs.git

The kernel rpms can be found at: http://fedorapeople.org/~steved/repos/pnfs/i686 http://fedorapeople.org/~steved/repos/pnfs/x86_64

The source rpm can be found at:

http://fedorapeople.org/~steved/repos/pnfs/source/

Bug database

https://bugzilla.linux-nfs.org/index.cgi

OSD target

http://open-osd.org/

Online References: pNFS

NFS Version 4.1

- RFC 5661 Network File System (NFS) Version 4 Minor Version 1 Protocol
- RFC 5662 Network File System (NFS) Version 4 Minor Version 1 External Data Representation Standard (XDR) Description
- RFC 5663 Parallel NFS (pNFS) Block/Volume Layout
- RFC 5664 Object-Based Parallel NFS (pNFS) Operations
- <u>http://tools.ietf.org/html/</u>
- pNFS Problem Statement
 - Garth Gibson (Panasas), Peter Corbett (Netapp), Internet-draft, July 2004
 - <u>http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-problem-statement.html</u>
- Linux pNFS Kernel Development
 - <u>http://www.citi.umich.edu/projects/asci/pnfs/linux</u>

